The early interaction of the outer membrane protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane.

نویسندگان

  • N Harms
  • G Koningstein
  • W Dontje
  • M Muller
  • B Oudega
  • J Luirink
  • H de Cock
چکیده

Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins.

Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent ch...

متن کامل

The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains.

Outer membrane proteins (OMPs) of gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded beta-barrel domain and a periplasmic alphabeta domain. Structurally, Skp belongs...

متن کامل

The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential.

The basic biochemical and biophysical principles by which chaperone-bound membrane proteins are targeted to the outer membrane of Gram-negative bacteria for insertion and folding are unknown. Here we compare spontaneous folding of outer membrane protein A (OmpA) of Escherichia coli from its urea-unfolded form and from the complex with its periplasmic chaperone Skp into lipid bilayers. Skp facil...

متن کامل

The CpxQ sRNA Negatively Regulates Skp To Prevent Mistargeting of β-Barrel Outer Membrane Proteins into the Cytoplasmic Membrane

UNLABELLED The promoter most strongly induced upon activation of the Cpx two-component envelope stress response is the cpxP promoter. The 3' untranscribed region (UTR) of the cpxP transcript is shown to produce a small RNA (sRNA), CpxQ. We investigated the role of CpxQ in combating envelope stress. Remarkably, the two effectors specified by the transcript are deployed to combat distinct stresse...

متن کامل

Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide.

We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 22  شماره 

صفحات  -

تاریخ انتشار 2001